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THE APPARENT WIDTH OF THE pLATE IN COMPRESSION

By Karl Marguerre

The present report is a very simplifying derivation .
for ‘Lhe results of an investigation entitled: llThe Load
Capacity of a Plate Strip Stressed in.Compression beyond
the 3uckl~ng Limitll and published in 1937 in the Zeit-
schrift fur angewandte Nathematik und Mechanik.

Followiilg the discussion of the methods and results
of other authors, the vriter suggests an extension which
is very desirable from the noint of view of airplane de-
sign pro%lems. It affords ~ practical theoretically
evolved formula for the amnarent width under an apprecia-
bly exceeded buckling loa~~

SUMMARY

The present extension of the customary stability in-”
vestigation to include the supercritical range, proceeds
in two steps. The first step considers the buckling form

w = f Cos ;~ Cos y known from elementary theory, _pre-

serves the higher terms in f and yields, with the aid of
the principle of, virtual displacements, a relation ]Vhich
gives the decrease of the a~~arent strain stiffness at the
instant of buckling (analytically expressed IIthe tangent
to the now stress-strain curve above the critical load!’
(equation 5.5)).

The second step evolves on the basis of a formula
containing several arbitrary values, from which the prob-
ablj~ produced buckling form; with a greatly exceeded crit-
ical uoint, can be computed, and. which affords a stress-
strai; curve (fig. 2) which reproduces with sufficient
agreement” the actual conditions existing in a zone
——______________ ___..___— .—__———— —-

*“Die m.ittragend’e Breite der gedr~ckten Platte.” Luft-
f~~rtforschung, ~ol. 14, no. 3, ]~a,rch20, 193’79 pp.
121-128.
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6* < c1 < 20”E* (as proved ?V comparison with experimen-

tal results). The apparent width is”conveniently calcu-
lable (fig. 3) within the cited range with the aid of for=
mula (7.8) cr (7.9), which approximately comprise the re-
sult of the theory.

I. INTRODUCTION

The following investigation treats the load capacity
of a rectangular plate stressed in compression in one di-
rection (x) beyond the buckling limit. The plate is rorn
tatably (i.e,, free from moments) supported at all four
sides 3Y bending-resistant beams.

Before buckling, the axial compression EX=-=x i’s
uniformly clistributed. and proportionality exists,between
the crushing c1 = - c and the compression ~x (accord-

ing to the law of elasticity). Above the critical value
E*,, of the crushing, the strip buckles - more in the mid- “
‘&le than near the restrained sides - resulting in nonuni-
formly distributed axial compression: the centroidal axes,
as comc!only expressed, IIdono longer fully contribute.”
The sought-for factor is the condition of form change in
the buckled sheet and in particular, the new stress-strain
curve; i.e., the relation %etween the mean value:

,>%/2
&

~~=b
/

fix dy = pl

~b/2
of the compression and. the mean crushing c1 (the crush-

ing of the longitudinal):

The crushing c1 (respectively, the amount of the
pushing together of the transverse beams c1 2) is chosen

as the first independent variable of our problem; whilo as
second independent variable, the lateral displacement
(pushing together) 62 1 of the longitudinal sides or
else the mean value of the compression in transverse di-
rection is introduced.

-— —
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11. THI!lFUNDAMllH?TAL EQUATIONS

!l!hehypotheses of classical plate theory (preserva-
tion of the normals, etc.) allow us to express the total
stress-form change condition of the thiil plate as func-
tion of the three displacements u = u (x,y), v = v (x,Y),
k= w (X,y) of the plate middle. The problem of plate
stretch (displacements U,V) may be reduced to the hipoten-
tial equation A A 0 = O %y having recourse to a “stress
functional 0; the deflection w follows the Ilplate equa-
tion!! - i.e., the bipotential equation with interference
term. The equations for @ and w are unrelated.

Premise of this theory is the fundamental assumption
of the “linearizedll elasticity theory: that all displace-
ments relative to the dimensions of the body, particularly
as regards the plate thickness s, are small.

But a thin-walled sheet may undergo elastic deflec-
tions amounting to multiples of its plate thickness; for
the treatment of problems of that kind the linearized
plate theory falls short. Now, a very practical and em-
pirically closely agreeing theory is arrived at by extend-
ing the elementary formulas so that the quadratic portions
in the deflections w are retain d in the changes of the

coefficients of the linear element ? (“strain” and “slip+
page”) while, as %efore, the higher powers of the stretch
U,T and likewise the products s w and z w (because s
is of the same order of magnitude as w) are stricken from
higher than the second order.

If Y denotes the changes of the coefficients of the
line element, and ~ its mean values over the plate thick-
ness (strain portions), we have:

.—. — ———_—________________—_____.————————————————.———

1
A more elaborate argumentation of this hypothesis is

found in a report “oy II. Trefftz, entitled llOn the Deriv-
atives of Stability Criteria ... 111.” Intern. Mech.
Kongress, Stockholm, VO1. 111, 1930, p. 44: S.ao Handbuch
der Physik, vol. VI, p. 56.
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(2.1)

whereby the terms w# , vy~ , rlx WY are new compared” to

classical tl.eor;~.

All other assumptions of the elasticity theory of
small deformations r,ay be retained unaltered. In particu-
lar, Hookers law in original form:

(El=E -——-—
1 - V2) (2.2)

(2.3)

for the form change energy (FE, abbreviated) a3 per unit

volume retain their validity.

The TX per unit surface a~ is obtained, for exam-
ple, from equation (2.3) by integrating z from - s/2

to -1-s/2 as the sun of the “strain energy” X2 and the
.

!Ibending energy” 2,2
,

a2 = E2 + ;2

with
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{[ 1
2 7

X2 =zt~ Ux+vy-t.L WX2 -f-J-
2 %22. 2 ,.J

I

[(- ~‘(l-~) UX + ; tvxz
\

)(
&

V;T“+ ~ @
)

]}
1 “

(2s41)

- (Uy + TX + Wx WY)2

.:: { []VXX+%J 232 = El —-

I?or the practical
introduce the stresses
strain poi-tion 52. Dividing the stress a (X,y,z) pre-
vailing at aiiy point within the plate in the conventional
manilei”iilto strain F and bending stresses ~ (say, in
form of

- 2 (1-v) [Wxxwyy-wxyq

U

calculation it is of advantage to
i-ather than the form changes in the

the strain portion expi”esses itself through the st~-ess
mean values ~ in the form of

2\ [(% +-Fy)’~’ = —— - 2 O+ v) (Fx Fy - P’)] (2,42)

On the other hand, the strain stresses follow Cauchy~s
equilibrium equations:

(2.5)
a~x + a~ 37 a~Y . ~—._
ax 5;=0’

———
X + ay

and the form of these equations allows us to replace the
three unknown functions 5X, F , Y by one ltst’reSS fUnc-

Y
tionll O through:

5X = .!3YY, q = Qxx; T = - @xy (2.6)

Hence the ex-pression (2.42) for the strain portion of FE
becomes:

~2,= z%[@xx+@yy)’ -2 (l+V) (@xx@yy-@xy’)] (2,43)

and the total form change energy A stored in a plate of
length 1 and width b nay , according tO (2.43) and

,,, . . ,, . .—.—.——... .-
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(2.41) be written as:

1/2 3/2

A= f’ ,j> { :~ ,(A@): -2 ,l+U, @xx@yy-@xy2,,”

-t;2 -%/2

+ ~~ S3~i-- [(Aw)2 -2 (z-v) (WXXWY3,-WXYV ]
}
dx dy (2,7)

An equation between stress function Q and deflection
r? is obtained if Hooke~s law (2.2) is specially retvritten
for the mean values (strain portions) of the stresses and
strains:

~YY
= El (Ux -1-U“vy + * (Wxa + v WY9 )1

(2;8)

and the displacement u, v is eliminated from these three
equations (reference 1):

A A Q’= E (mxy2 - WXX Wy3~) . {2.9)

With the aid of equations (2.6) to (2.9) the condi-
tion of stress and strain in the plate can be progress-
ively cletermincd (Ritzts method). 2

III, DETERIv1INATION OF STRESS FUNCTION @ AND OF

DEFLECTION f AS FUNCTION 03’ 61 AND C2

In contradistinction to the pure energy method em-
ployed. ii~ the report uuoted :,tthe %e.ginning, which makes
explicit use of only “equations (2.2) and (2.41) we apply
———...— —————— ________ ____ _.-___.__—_- .—.—————————————_
2
There is little home for an exact integration of (2.9) to-=

gether vith the “ex~end.ed.plate theory “ which might be
added as second eq,uation to determine 0 and w (cf. K.
Marguerre: Z.f.a.M.M. , vol. 16, 1936, p., 353), ‘beCaUSe
both equations are nom-linear in addition to being coupled
(in contrast to the elementary theory).
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a “mixed” method. The deflection w is again expressed
%y a Ritz formula (containing arbitrary values), but we
first comp.ut.e .@.from the differential: equati_on (2,.9),
and then only proceed. to the energy expression “in the form
of (2.’7) in order to determine, by virtue of the minimal
requirement of the principle of virtual displacement, the
free values as functions of the independent Cl and 62.

I
.’!
;!:,J Even though this method does not suggest itself as

readily as the previously emplo;~ed one,
i,

it has (and thisj‘1
‘t is of particular advantage in more complicated cases - re-t,~,

straint, shear) the advantage of minimizing the -paper
:Oj, work. :3

f
~
i
.! In fact, the simplest Ritz formula4 imaginable for
.,:; w::],.~6

j’ ~
‘rrX ny

1
w= f Cos ~ Cos -~– ~ (3.1)

~,

1’
‘,/.

fihat is, assuming that this form of buckle produced at the.“
instant of buckling, is preserved in form even beyond some
distance after exceeding the buckling load (i.e., that on-
ly the free value f changes as the load increases), gives,

j’ for the right-hand side of equation (2.9):

-( 1 + Cos ~y )( 2Try
1 + Cos –~–

)]

~\,

1,F\~ and a.particular integral of the equation:
,,

(3.2)

I
,,~
1

‘1
____________
‘Both methods are identical in nature because the differ-!i,’
ential equations (48) for the displaceme-nts u, v

j’,
are sim-

ply the equilibrium equations (2.5) ~~ritten in the displace-
;!,( ments.

1
I

~’
41f 1 ~% this theorem must be extended to include the,,,
nodal points in transverse direction. Then T denotes

f“ the distance of two nodal lines.
lr:
Ii!

.. ...— —— .-———. ---
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can be given at once in the form of

The complete solution for @ satisfying the limit-
ing conditions is obtained with appropriate solutions of
the correlated homogeneous equntioil:

AA@=O (3.3)
.

Assuming predetermined displacements, the required
limiting conditions are:

for the displacements normal to the sides;

(3.4, )

(3.4&l)

for the displacements tangential to the sides?

These conditions are not exactly satisfied by combina-
tion of the particular integral with a finite number of so-
lutions of equation (3.3).

On the other hand, it has been proved that the careful
com~pliance of the limiting conditions for the displacement
tan~ential to the sides has no marked effect on the sought-
for stress and form change condition of the plate and par-
ticularly. on the stress-strain curve. The requirement of
vanishin~” derivation of normals instead of

(
av + 1# y)

o, au (x ● 3 =-———---- =
ax ay

(3.42)

0 (3.43)

along the cited sides - mechanically expressed “disappear-
ing shear”~ - may in consequence be introduced.
------------------------------------------------------

5

1
Wi~y)=[&g+2% .*1,2

IYi’ (X9”’3)=[%+$+%:; .+b,,

Both expressions disappear, in fact.



N. A, C.A. Technical Memorandum No- 83? 9

The limiting conditions (3.41) and (3.4s) can
“-’by“a happy chance, be complied.with in very simple mann~rc
Putting

+~p2x’+*P, Y’ (3..5),.

(3,6)

equation (2.8), that is:

-q
Eux=@yy-u@xx-$ ~x2, Evy=@xx-v@yy 2wya

and (3.41), that is:

‘[/

>1/2

/’

1/2
E cl . -~ (@yy - v @xx) dx ‘- ~ 2 dx‘x 1

J-.
0 ?0

22 2TTy ~afa 21Ty
= - E :i:– Cos —-- + P> - v pa -I-E –-~ (

1 + Cos –:
b 81 )

give for the two constants pl and P2 the equations:
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while the condition - @xY.= T = O is identically ful-

filled in the entire plate and consequently, also, in tie
sides.

The mechanical significance of constants pl and pa

appears from the equations (3.6). Integration over the
width and length of the plate gives:

1/2 y//2

J
@

/
xxdx=-paz~ “’%r~y= -plb”

:1;2
b/2 :1/2

cr 1/’2
&

[

&

[

.
Pl ‘= ~ ~x dx, pa = ~ Fy dY

~%; 2 : /2

In this manner the equations (3.7) give at once the sought-
.for relations existing between the mean values”of the
stress and the mean crushing 61 and ~29 leaving the de-
flection f as the sole unknown quantity.

The determination of f follows according to the
principle of virtual dis~placement from “the premise that
the ~~oteiztial energy (i.e. , the difference between the Fz
and the potential of the external forces) becomes a mini-
mum. Having assumed rigid side beams while investigating
the equilibrium condition hy predetermined displacements
of the sides, the external forces contribute no work on
the sides (fixed during the virtual displacement), and the
minimum requirement for the potential energy reduces to
the minimum requirement for the FE itself.

As a result, wo need to formulate only (cf. equations
(2.7), (3.1), and (3.5)):

A=% /’

J
[(m’ - 2 (1+ @ (@xx @yy-@xy 2,] dx dy

~ls~
+ ——-—

24
/

‘[(Aw)2 - 2 (1-U) (17XXWYY-WXY2)] dx dy
.

[(
44 44= &llk “2 Lx_ ——+Vrf

)
+ : (Pl+pa )= - 2-1:21

2 L2 ~64b4 64t~
PI Pa 1
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i“
and to substitute the strains for the stresses by mkans of

...=..(3....7rgiYzQig.Q.g.
..... . ,.,

{

~12 E22
8,2 [++ ;, ‘

A=A(C,f)Etsl)t ––- -t-–= + v CIC2- ~~~~
,2

( )1i+u12+n4f4
‘>4” F]

[(3-V2) ($ +.+ C2
12 J 256 1)4 L

... ‘.
-..

:“ (3;8)

.

and aA(~,f~ =’O gives for f the equation:
af

The three equations tif (Z.7) and (3.9) represent the sought-
for stress-strain law above the critical load.

The result is discussed in ~reater detail when con-
fined to the case of the s~uare plate (Z = b).

IV. STRESS-STRAIN ?JQUATIoNS FOR THE SQUARE PLATE
.

The strain stresses are, according to (3.6) and (3.’7):
\

5X = z!
{
El+ve2- :y: (1 + u)

[
1 + (1 - “) Cos ~;~

]}

7-=0

(4.1)

,.,

(4.2)

,. ....——. ——-------- ...... —.,—.,. . .. . . .. . .. . .——. ., . .-——-
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The shear stress disappears, the normal stresses are dis-
tributed at right angles to the direction of action, ac-
cording to a cosine law.

For the mean values”it gives with (3.9):

(4.3)

For the maximum value of the compression ~x (occurring on

while for the minimum value (in the middle), we

(4*5)

obtain:

In many cases it is of advantage to treat the stress
and strain condition as function of the mean compression

P1 and pa . exerted on the side beams (as ,independent vari-
able). The solution of the system (4.4) gives: .

E 6, = 2p1 + (1 - ~) Pa - P()

1 (4.7)

E c~ =Zpa+(l-v)pl-po
J

where P. is an abbreviation for

=2s2
p = z! ——
0 3b

then (4.3) is replaced by

(4,8)
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and (4.1) reduces to the simple form of
.,.

2rry
fix = pl - (pl + p2” - po) Cos ——-b

““” “1

(4.9)

my = Pa 4 (??l+ P2 - Po) Cos ~m~x

v. TEE SPECIAL CASES pa = O AND $2 = O

The equations (4.1) to (4.9) become considerably more
simple when further divided, for two very important prac-””
tical cases:

Freelv shifting—-_——....L—________
longitudinal sides—-.— ———_____________

1).&l =0

I?roin:he second equation

and consequently,

~2f2 1 ( 1 ~25.2——-_____
–-m ‘ 2 ‘1 - 1-L? 33=)

from (4.3) and (4.8).

Y Nonshifting_.—_———__——
longitudinal sides———

62=0

(4.4) and (4.’7) follows:

l-vD = - ——— p +2.2 21
z P.

~2f2 l+V

(

PO
z —’–—~ = ——— pl - ——

8b 2 l+V )

(5.11)

On the other hand, (4.8) and (4.3) give at once:

I
(5.12)

With f = O these relations give the critical values:

pl (f=o) = Y* = p.

= Et 1 IT2S2_—— ———— = -J7J?C**
1-1-v ~ba

(5.2)
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.

in accord with known results.

“k

,,

The second equation of (4.4) discloses that thefipre-
~ for the transverse strain (or transverse compressi~’
changes when

Referred to the critical crushing 6* or ~**, it means
that (for a transverse contraction figure v = 1/3):

The transverse elongation The transverse compression
%ecomes a contraction becomes a tensile stress
by twice exceeded buck- ly three times exceeded
ling crushing buckling crushing

With the abbreviations (5.2), the equations (4.3) and (4.8)
read:

I

Eliminating f from these two pairs of equations leaves
the stress-strain law in the form:

I
(5.5)

Note that the relationship of stress and strain
remains linear even alove the buckling load within the
scope of our approximation; the “apparent strain stiffness”
is

Unrelated to v forv=$

is exactly half as great as in the proper elastic range be-
low the critical load.

Observing that in loth cases the compressive stress
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prevails in the longitudinal, equation (5.5) gives for
the app,are,nt width lm of the sheet, according to the
equation

pL.bm = pl b

I)m 2
-— .-— ——— —
I = (3-u) (l+V)

(
~ + (1+.U)2 p** .-————. .———

2 .pL )

9
(

8 p**
= —- l+––––

16 )

(u

‘pL.
= 1/3)

(5.6)

The transverse tension set up by nonshifting sides
causes a slight increase in annarent width (i.e. , in the
load capacity of the sheet) relative to the case of disap-

..-

pearing mean transverse stress. The same result obtains
from a comparison of the minimum compression values pro-=
duced in the centroidal axis: Substituting the side
stress ‘R ancl the critical compression p* and p**

for El an d 6* (E**), according to (4.5) and (5.2),
equation (4.6) gives for pM the values:

I
P]J =

1
(

2 41+UJ P**————
3;:

PR + –i :–v
)

= 1/5 pR + 4/5 p** (v=l/3)

(5.7)

where it uill be observed that in the first case the cen-
troidal axis rejects every compression rise above buck-
ling, while in the second case, because of its better sup-
port by the transverse fibers, it takes up (even though
small) a part of the compression.

The result expressed %y equation (5.5) - that the ap-
parent strain stiffness ina square plate at the ,i.Qst.ant_.
of bu”ckling reduces by half, is quite generally valid for

Pa = const + O
I

Ea = const # O

The critical value itself is affected by the magnitude of
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~2 ‘r
Ea ~..O. We find:

*
‘Iir = p - Pa Ckr = C**- ‘2

~~kr=~*- (1+~) p2 Plcr
= ~! [C** - (1-u) c~]

‘pkr - ~ (I?* - Pkr) = Et [6kr ~ ~ (~**-ckr)]

(5.8)
and from (4.7) and (4.4) follows:

= 2 (Pl - l?~r)

that is, ~recis”ely the lam (5.5) except for the values

pkr 9*8* according to (5.8) instead of the values p*,

etcw

The linear aspect of the stress-strain curve above
the critical load is, of course, a result of the limita-
tion to the approximate formula (3.1). As a matter of
fact, equation (3.1) is valid only ‘tat the very first in-
stant’; after exceeding the buckling load. The straight
lines (5.5) are the tangents to the actual stress-strain
curve, which, starting from these tangents, deflects down-
ward (fig. 2).

VI. CCMPARISON WITH OTHER TEST DATA

The investigations discussed thus far differ from
older reports on this subject (Schnadel, reference 2; Cox,
reference 3, Yamamoto and Kondo, reference 4, Timoshenko,
reference 5), in sofar as, other than hypothesis (3.1)

77X
v =,f Cos jj--Cos ~ (square plate) (6.1)
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concerning the buckling form, no other arbitrary as sump-
tions are introduced.

,,...

Instead of determining the horizontal displacements. ,
u anti v explicitly - or by introducing the stress func-
tion Q directly - the first three authots cited, intro-

a~x
duce the assumption ~ = O or in other words, ax O,“-— =
a--y :

3; = 0“, By virtue of this assumption,6 =x may be writ-
b/2

~
/

>’

teil in the form: & . ~x dx
b

and the extended

Hookers lam (2.8): ~b/ 2

[(u(b/i) - u(-h/’2)]+ ~~

,%/2

Fx=f
/

~x2 dx

=E
[ - ‘1+ & J::x. d.] ~2

and “correspondingly:’.

~y=E
“[ 1 ,L::# d.]]

-62+=
—————. _____ ____ ____ ____________ _________ _____—___

(6.3)

6Admittedly, Schnadel adduces this relation by the stress-
function method but the inference is right only for each

single term of the formula w“ = j% ‘i. Cos ‘~ COS ‘~ .

As so”on as several surnrn&ds””&re adm”itted’ simultaneously,
the latv of superposition naturally ceases to hold and, in
fact, the mixed terms fifk lead to a nondisappearing

shear stress whose omission, to be sure, renders the cal-
culation much easier.
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Then the strain portion ~ of FE becomes in the case of
disappearing transverse contraction:

which means that this -portion (%Y given Ritz formula
for w) can be determined in very simple fashion.

The energy of bending is given unchanged according to
(2.4) or (2.7).

Cox and Yamamoto-Kondo, after him, carry this sim-
plification one step farther by writing 5y(x,y) = O for

the whole plate; that is, neglect even the work of strain
performed by the transverse stresses. Schnadel, on the
contrary, uses (6.4) as basis7. Allowance for the trans-
verse contraction is in none”of the formulas possible.

COXtS assumption 5Y (X,y) = o contains two state-

ments: that the transverse stress within is invariable

(

a5y (Xy )
——.. o

ay = )
and that it disappears at the side

(ay (x, + ~/2) = 0)s In the practical, most important
case of strong - i.e. , especially undeflecta%le longitudi--
nals - the limiting condition is certainly not complied
with; and so for this reason alone a direct comparison of
Coxls results with ours is impossille~ Gra_nted even that
we visualize the limiting condition ‘Y ‘T = 0

to have

been realized by some appropriate test arrangement, the
first statement regarding the strain condition within,
still remains fundamentally inadmissible. Because, in or-
der to apply Ritzls method in a mathematically uno%jec-
tionalle manner (that is, for example, preserve the known
dictum th~t the true load capacity must lie below that
computed by approximate formula), it is not permitted to
——————————.—.———.—-——————.-——-————-———————————
7
Since Schnadel proceeds from a somewhat difft?rent concept

of the buckling process (division in internal and exter-
nal ene~gy), the true facts of the case are not apparent
at onceC
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mix geometric@ st,atcments (concerning w) with mechanical
ones (about ?). Unless the mechanical theorem ~ = O
happens to-be fu-lfillcd h-jr itsclf,the FE. must be re-
duced %y this assumption: concerning tho,direction of tho
discrepancy from the true VQIUO (let alone an estimation
of tllc errors), nothing more can 3C said. This drawback
is felt most when several a~?proxim~.te solutions are to be
compared; because then it is impossible to deduce that the
formula givifig the lo~vest load capacity must be the letter
one.

Mathematically, the omission of a part of the FE
fares no better. So, for instance, (IOX obtains for the
stress-strain law above the buckling limit the e~ression

(6.5)

i.e., a drop in (apparent) strain stiffness to one-third.
But , if l,?ecom-oute the case of vanishing side stresses
Cfp and T IIe;actlt conformable to the method cited at the
beginning of this report, we find:

- P* = kE (61 - C*)% (6.6)

where the coefficient k ranges between 0.41 (v = o)
and 0.34 (v = ~) depending on the amount of transverse
contraction. For v = 0.3 K has the value 0.38; that is,
below 0.50 (see equation (5.5)), but still noticeably above
0.33. Consequently, the omission of the share of the
FE originating” from the transverse and the shearing stress
is not without some effect.

Cox!s experimental results are in contradiction with
his formula, (6.5), but confirm our formula (5.5) very sat-
isfactorily.

From Schnadells data the results (for pa = 0) given
in the preceding sections can be deduced in complete agree-
ment, because the shear stress ac-tu~.lly~les disappear within
the validity range of w = f cos ~~ cos ~–, and the effect

of the transverse contraction ca”ncel~ out “in the case of
displaceable longitudinal sides.

., Timoshcnio elects to proceed from the exactly valid
expression (2.%) rather than (6.4). But his calculation
differs from the one. given here by the introduction of

.
apProx~matc Cnssumptions, each containing a free VO,lUO for
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the displacements u and v (independent of the w for-
mul a ). The results reveal the strange fact that the stress “
maximum dots not occur on the side but on the inside at a

distance depending on the degree of loading, so that the
stresses actually decrease even toward the side. Apart
from that, there are (as in Yamamotots case) tensile stress-
es in the center of the hay under greatly exceeded buckling
load. Instead of the formulas (5.5), through which the de-
crease in apparent strain stiffness above E*
tic stiffness,

versus elas-
finds expression, we find:

PI -P*= 0.640 E(C1- c?, pl - p** = 0.624 Et(~l-~**)
(6.7)

at v = 0.3, according to Timoshenko?s calculation.
It is seen that, according to these formulas, the load
capacity is rated too favorable, as it should be; because
Timoshenko uses the energy term without omission while em-
ploying a Ritz formula, which does not express the actual-
ly occurring conditions as well as the one used in the
present report.

By an extension of (6.1) the cited authors seek to
account for the fact that the buckles must become deformed
if the buckling load has been exceeded to a comparatively
appreciable extent when, as a matter of fact the “bulge form
(6.1) is derived from the energy balance (between lending
and strain energy) at the instant of buckling, and it is
evident that this balance must change as the compressive
forces move toward the sides. The first three authors
quoted are unanimous in assuming that the profile form of
the bulge must remain unchanged (w = cos ~ $(Y)) in the

compressive (x) direction, but that transversely to it, a
flattening takes place in the middle, and a corresponding
buckling near the edges. According to that assumption,
the longitudinal fi%ers subjected to higher normal compres-
sion are curved much more, and therefore, are better alle.
to avoid the compression,and the increase in bending energy
is less than the thus resulting decrease in strain energy.
Cox particularly assumes the profile form to be built Up
from two sine arcs at the edges and a straight piece in
the middle, the length of which follows from the minimum
requirement . Without attacking the other assumptions by
Cox (Gy = 7 = O), Yamamoto and Kondo turn against the ar-
litrarincss of this assumption regarding the lmckling form,
which, in fact, due to the jump in the curvature, is not
at all satisfactory. And that is the reason for their l]cx-
act” commutation of the form of buckle by means of a non-
linear d~ffcrential equation. As remarkable as their en-
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l’!
\ suing m.a,thematical problem undoubtedly is, the labor in-

1

‘~~
wlvcd is not-justified in this, case be,,c.B.u,s_e:.,fir,,st,the, _
solution of the pro%lcm stands and falls with the premises

Iii

1
l! 5Y (x,Y) = T(x,y) = 0; that is, its importance from the

;i practical” point of view is subordinate; second, this method
(“ is not worth while even in this particular case because,
It; ~

\

1

with the help of the continuous formula in the curvatures
Ij! (see report cited at the beginning):
,,,,

ITx

(
31Ty

w = Cos -—
b

f~ Cos ‘; -,f3 Cos -——b“ )
(6.8)

I!
!!/,
.,:i The two parameters fl and f~ give with the energy
II method the same buckle pattern and the same stress-strain
): law with slide-rule accuracy aS Yamamoto and Kondo achieved

K]
with their exact method.

~!‘1(ij Schnadel also employed this same formula (6.8).

II

~J!
Hi s

results differ very little from those obtained without the
/, assumption T = O. The difference i~. buckle form (6.8),
i(1 and so from the stress-strain law (5.5) is, moreover,
:, slight in the case of. ~Y ~ O if only one deformation of.,

1
,b!
~

the profile x = con~tan~ is taken into consideration.
(This remark was also mad-e by Timoshenko. )

!
The relatively good agreement of COXIS formula for

the apparent width under 100 times exceeded buckling
crushing, is merely accidental. 3ecause the load capacity
is considerably underestimated at the very beginning on
account of the disregarded internal transverse and sh”ear-
ing stresses, and that necessarily is righted again under
sufficiently exceeded load, because the buckling form,
consistently diverging more and more from the actual form,
mistaliingly presents a too high load capacity.

VI. EXTENSION OF FORMULA (6.1)

Th’e Apparent width Under Considerably
Exceeded Buckling Load

The aforementioned displacement” of the pressure dis-
tribution under considerably exceeded buckling load (as
often encountered in practical airplane design) calls for
a much greater divergence from the buckle form (6.1) than
afforded in (6.8). For it ‘is a fact that under ten times
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exc’ceded buckling load, for example, the two strips adja-
cent to the ‘edges carry nearly the full load, while the
middle of the plate takes up little more than the buck-
ling stress itself, The conception suggested %y the ap-
parent width, that the plate falls approximately into
three zones: the two edge strips of tvidth bm (the appar-
ent width), and the unloaded middle part are indicative
of the kind of strain to he ~xpected. Intermediate buck-
les must form near the edges since the edge strips, ex-
actly like the whole plate (at start of phenomenon), have
the tendency to split more into square panels rather than
into the very long rectangl~~, so that we may put

rrx my
w = f~ Cos y Cos ~ - f3 Cos :;=

(
Ry

Cos —
b

- q Cos :;Z)

(7.1)

with the parameters fl , f3 , and 11. For ‘fi=l, for
example, this formula would have the centroidal axis y =
O retain its cosine form unchanged, while toward the
edge, the middle of each panel (x = 0.) develops appreci-
able counterbuckles under sufficiently great f~ . With
proper choice of q<l the exact location of these
buckles can be more accurately determined and a certain
amount of flattening oltained even in the middle.

The calculation itself may be made by either one of
two methods: the llexactllmethod, or the approximate meth-
od evolved on the formulas (6.3) and (6.4).

The IIcxactlfmethod being, as is quickly proved, ex-
tremely tedious, we give hereinafter, only the approxi-
mate method and then: compare the results.

It is:

2

() 1 f,’ (1-cos A X)(l+cos A y)-; f32 (1-COS 3A x)
; ‘X2=4

[l+cos Ay - 2q(cos A y+cos 2X y)+q2(l+cos 3A” y)],
————————_— _______________________________

8The ohenomenoti of intermediate buckles above ten times
excee~ed buckling load, was experimentally observed by
Lahde (Luftfahrtforschung, vol. 13, 1936, p. 214)*
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- ~ flf3(cos A“’x-cos 2A x) [(l+COS “A x)-~(cos A y+cos 2A y)},
,., 2

i

I :’

I
I
I
i,
,
1.
,,

[1 - COs ~ y - 6q(cos ~ y-CO,S 2A y) +“ 972 (l-cos 3A Y)]

- ; flf3(cos h y+cc)s 2A X)[(l”cos A y)-3q(cos A y--cos 2A )],

-?- 9f32 [(1 + Cos A y) -2q (Cos A y + Cos 2A y) I

+ V2 (1 + Cos 3A Y)]]

b

D E –l-

./

; ~2
{Y?Yzdy = -–z f=z (1 + Cos A x)

2-b 8%
o

-1-f32 [(1 +,COS 3A x) (1 + 91-12)]
t“

- 2f~ f~ (Cos A x + Cos 2A x)
}J

b
J

I

>

{
C2 C?ky= -.-.E;X ~ f14

II. 2“
o

+ 81 f34 :
[
:(1+ ~4) +6112-211

1

+ 18 f12 f32
[
l+?l~+. *(1-2q)

]}

l)

~

r

lj2 dx = -&z
-b {

; f14 + ; f34 (1 + 9?12)2

;
i- fla f32 [4 + 2(1 +. 9m2)~-2f~3 f~

},“” I
Then (6.4) gives the strain portion ~ of the FX

at :

,
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1=
{

G.sbac12-~i Q= [f,’ +9 (l+ Tla)f32] “
4’b

+ C22 + 62 “ [f; + (1 + 9q2) f321~;z

[
(~-3T +6@+

=4
3f14 -2f13 f3+6f12 f~a

ZGX

+ f34 (123 - 162’11+ 513112 -I-243 ‘f14)1
J

and for the bending portion ~, according to (2.7)

~..s~ c4fla + f32 (100 + 324 02)1X=12

= ~:~ [f,’ + f,2 (25 + 8?. ?12)] (7.24)

In view of the high degree of the ensuing equations,

(7.23)

it is not advisa%le to

f and “Tl in relation
t%~ns:

$$– = 0,
1

attempt the determination of f~ ,

to cl by means of the three equa-

3A– = (),
afs %=0

(7.3,)

and one of the conditions of section V for ~a bya~he

usual method, %ut rather to abandon the condition afi=o
for n, the most unessential of the parameters, and to
arrive by trial and error at a value of II yielding the
lowest possible load
cording to fl and

capacity. The differentiation; a~
f3 gives:

f~a + 6 f~a (11-6 ?l+12n2)
)

~’

[

f 13
+ ~’p

J

t5f12 (11-6 m+12’112)-2 ‘~ (7.~z)

+ 4f32 (123 - 162~ + 513?19 + 243114)
1

+ (25 + 81~a) c*=’r)
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It also follows from pa = O (the only case considered
here), according to (6.3) and (7.21):

a

[
132 = –+ 4f12

32 1)
+4(l+9q2)f3~

1
(7.33)

that is:
=2

c1 = ‘2*-1-i~~ [4f12 - 3f1 f. + f32 (31-18n+18~2) ]
,. 1

9 (1+72) cl = (25+81T12) c“ 1“(7*34)
+ 7?2

16 ~-s [fi2———— (31-18 ~+187)2) -f13/f3 I
+ f32 (244 -= 324?l + 990112 + 324~4)] I

J

The elimination of the parameter fl from both equations
leaves:

c1 - 6*

_——_.——————- ——_ —— =9(l+q2)

c1 - 25 -1-81 TJ= C*———————_ — -
9+9q2

,.

4- 3~ + (31 - 1811 + 18n2) [2——.———————— ______ ________——_ ——————.——
(31-18 ~+18’i12)- l/~ -I-(244 - 324~ + 990~2 + 324V4) {2

(t = f3/fl ) (7.4, )

with which El/c* is readily computed for every T as

Furthermore , is given according to (6.3) and
(7.2 ) through the e~uation

.%/ 2

Inserting Cl acoording to (7*34) gives:
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.P*+E IV2 [2f12 - .3PI :2
3fl f + (13*18~) f~] (7,43)

that is,

pl-p*E4_6[ +(26 -36~)~2
-———— - -- —-—-— -—————— ——- (7.44)
c1 - 6* ’24- 3~ + (31 - 18Tl + 18~2) ~

This formula shows conclusively that the apparent stiffness
decreases at ~ > 0 (i. e, , by increasing strain of the
buckles). Analyzing pl(~l) as follows, from (7.41) and

(7.44) for different values of ‘ii, it is seen that with

m’ ~ the most logical course of the stress-strain curve
is obtained. Then (7.44) and (7.41) read:

P1 - P*————-——
c1 - E*

cl - C*-———.— .——

% - 4.02 C*

(This equation
strain law.)

(7.5) represents the sought-for stress-

Based upon the exact method, i.e~ , with consideration
of the part of the FE originating with the shear stresses,
we obtain (likewise for ~ = ~) in place of (7.5) the re-
lations:g

PI -“P* E4- 6~ -I-18.6 C2
-....——— — _——_—— ———.—— -
cl * C* ’24-

39 (c)
3~ + 31.8 ~z = 2

1

(7.6)

61 -’E*-——————— = 11.25 -e-~n::<;;:p
% - 4.02 C* 31.8 -

It will he olserved that the majority of the terms in-
these equations (7.6) are in agreement.10 The discrepan-

-—-——————— ______ ———————————.—————————————————_

‘The difference in both theories touches only the factor
of the (mixed) term f12 f32 in (7.23) for,the FE, since

the shear stresses do not contribute to the other terms
(a useful check for the “exact” method).

10The transverse contraction precisely cancels out in this
considered case Pa’ = 0.
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.

ties concern only terms which make themselves felt when
9...

c = O (that is, for c1 >>c*) is considerably ,departed
from. They act in the same direction in both equations:
there is for equal ~ value, according to (7,6) a greater
61 than according to (7.5) and a greater reduction fats

tor ~(~). As it should be, the discrepancy from (5.5) is
less ~ith the exact method than with the approximation law
(6.4).

In figure 2, which gives all three curves, the curves
for the 61 values diverge not only from their tangents
but also from each other more and more. The result of the
approximate on, as exyedient as the abbreviated calculation
may %e for a first approach, must be received with caution;
its better agreement With the Lahde-Wagner test points un-
der considerably exceeded buckling load (fig. 3) is, of
course, accidental. Cox~s theoretical and experimental
points are also shown in figure 2, and show the good agree-
ment of his experimental points Ivith our own results.

Although the equations (7.6,) contain the essentials
regcrd.ing the lehavior of the plate after buckling, it may
be of general interest to give the exact formula for the
apparent width . Expressing the apparent width with

(7.71 )

gives vith pL = E El (= stiffener stress) as extension
of (5.8):

(7.7=) “

One may attempt to approximate this curve %y a sim-
ple analytical expression. In support of von K&rm&nls
approximate formula (reference (5), it suggests the use of

z a formula of the form of

1 “’
.

_bm
=A &

T
I-Z>

In fact, a satisfactory approximation is o%tained with
A= 0.81 r.nd B = 0.19 within the range of E* < c1 <
60 E* or, in other vords, with the formula

I
——

bm
= ~“54J & s ‘0”19 “

(7.8)
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Within a small intermediate range the values o%tained %y
the formula are too small.

Another ‘empirical” approximate formula reads:

This formula, while giving values which are a little too
low for cl > 20 E* relative to (7.6) reproduces, how-

ever, the typical behavior (inclusive of c1 = c*) very

well, and its marked simplicity recommends it.

The Lahde-Wagner test points in figure 3 are merely
by way of reference, since they pertain to the case of
nonshifting sides and perfect fixity. To become “compar-
able” they are “converted”; that is, the course of the
poiilts with E~/E* is taken over and only the critical
value Ckr (which, naturally, is higher for fixation), is

identified with our reference point E*. On the assump~
tion that this simple conversion method is permissible,
the agreement, particularly with the formula (7.9) is
very good.

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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Figure l.- Rectangular plate under uniform compression on
two sides.
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a. ‘lheor::ticalcurve(eq. ‘7.6)
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approximate methoi
c. Theoretical curve(eq. 5.6)

(tangent to a and b)
d. Coxk theoretical curve

Y- Figure 2.- Stress-strain curves
according to different

theories for range c1/c*<75~P1 = 0)

a. Theoretical curve~eq. 7.6)
b. Approximation for a)
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d. Coxls theoretical curve.

Figure 3.- The apparent width after
exceeding the buckling

load p*= E.c*--theoretical and ex-
perimental.
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